Как отличить deepfake-видео? Facebook вложит миллионы в поиск ответа на этот вопрос

1505  0

Facebook анонсировал конкурс Deepfake Detection Challenge. Вместе с Microsoft, MIT, Калифорнийским университетом в Беркли, Оксфордским университетом и другими исследовательскими организациями социальная сеть решила провести соревнование, участники которого должны будут разработать наиболее эффективный способ отличать deepfake-видео и фото, пишет Meduza со ссылкой на официальный блог компании.

Facebook вложит в инициативу 10 миллионов долларов, часть из которых пойдет на призовой фонд, а остальное - на создание базы данных для обучения и тестирования алгоритмов. Отсутствие подходящего открытого набора данных, с которым инженеры могли бы работать без каких-либо юридических ограничений, является, по мнению руководства компании, одним из ключевых препятствий в деле борьбы с дипфейками.

Для создания подходящего датасета планируется пригласить актеров, подписавших соглашение на использование своего изображения, и записать с ними видеоролики, которые станут доступны участникам конкурса. Однако выкладывать их в открытый доступ не планируется: для работы с данными потребуется пройти процедуру регистрации и подписать соответствующие соглашения.

Победителей конкурса определит панель экспертов. В нее войдут специалисты из Facebook, Microsoft, правозащитной организации WITNESS и других общественных, IT- и академических сообществ, которые сравнят эффективность решений разных команд.

В Facebook считают, что демократизация ИИ и последовавшая за ней волна фейков в интернете подрывают доверие к информации в Сети и ведут к дезинформации. Конечная цель новой инициативы - разработать инструмент, который будет находить сгенерированные нейросетями фото и видео максимально эффективно. В день на Facebook загружают более 350 миллионов изображений, и даже маленькая погрешность при таком масштабе может повредить репутации и социальной сети, и тех людей, чье изображение использовали при создании ролика.

Сегодняшние инструменты с фейковыми видео и фото справляются плохо: их слишком легко обойти. О трудностях определения подделок в июне этого года изданию The Verge рассказал профессор университета Южной Калифорнии Хао Ли. Вместе с коллегами он создал алгоритм, позволяющий находить подмену в 97% случаев. Метод основан на анализе особенностей мимики, которые текущее поколение Deepfake пока не может воспроизвести. Однако Ли признался, что разработанный его командой алгоритм совсем скоро устареет - технологии создания фейков изменяются очень быстро, и методы их детекции за этим развитием не поспевают.

Сложность борьбы с фейковыми видео еще и в том, что улучшение методов детекции автоматически приводит к улучшению технологии производства фейковых видео в будущем. Дело в том, что в самой структуре алгоритма GAN, с помощью которых они генерируются, заложен принцип состязательности: одна нейросеть пытается создать фейковое видео или фото, а вторая стремится найти подделку среди настоящих роликов. Таким образом, любой метод, улучшающий технологию детекции, потенциально может быть использован для того, чтобы усовершенствовать и генеративную часть GAN. При этом борьба между детекторами и генераторами выйдет на новый уровень.

Термин deepfakes появился на Reddit в 2017 году, - это производное от двух понятий: deep learning и fake. Массовое распространение термин получил после того, как пользователь Reddit с ником deepfakes и его единомышленники начали постить порно-видео со знаменитостями - они прикрепляли лица последних к телам порноактеров, используя для этого алгоритмы генеративно-состязательных нейросетей. В декабре 2017 года сабреддит закрыли, а крупнейшие контентные площадки (Gfycat, Pornhub, Twitter и др.) начали активно удалять фейки со своих ресурсов. Авторов постов банили. Google даже обновил собственные правила использования сервисов: в новой версии разрешается блокировать ссылки с "синтетической порнографией".

пропорции

Есть тема? Пишите Kaktus.media на: +996 (700) 62 07 60
URL: https://kaktus.media/397477Копировать ссылку
Если вы обнаружили ошибку, выделите текст и нажмите Ctrl+Enter
Спасибо!
Комментарии
дефолтная аватарка юзера
Комментарии от пользователей появляются на сайте только после проверки модератором.
Правила комментирования
На нашем сайте:
  • нельзя нецензурно выражаться
  • нельзя публиковать оскорбления в чей-либо адрес, в том числе комментаторов
  • нельзя угрожать явно или неявно любому лицу, в том числе "встретиться, чтобы поговорить"
  • нельзя публиковать компромат без готовности предоставить доказательства или свидетельские показания
  • нельзя публиковать комментарии, противоречащие законодательству КР
  • нельзя публиковать комментарии в транслите
  • нельзя выделять комментарии заглавным шрифтом
  • нельзя публиковать оскорбительные комментарии, связанные с национальной принадлежностью, вероисповеданием
  • нельзя писать под одной новостью комментарии под разными никами
  • запрещается использовать в качестве ников слова "Кактус", "kaktus", "kaktus.media" и другие словосочетания, указывающие на то, что комментатор высказывается от имени интернет-издания
  • нельзя размещать комментарии, не связанные по смыслу с темой материала
  • нельзя использовать в качестве ника чужое реальное имя и/или фамилию
  • нельзя указывать ссылки и гиперссылки на посторонние сайты
НАВЕРХ  
НАЗАД